Section 5.4
 The Fundamental Theorem of Calculus I

(1) The Fundamental Theorem of Calculus Part I
(2) The Indefinite Integral
(3) The Net Change Theorem

The Fundamental Theorem of Calculus I (FTC-1)

If f is continuous on the interval $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f, that is, $F^{\prime}=f$.

Example 1: Evaluate $\int_{1}^{3}\left(x^{2}-6\right) d x$.
An antiderivative of $f(x)=x^{2}-6$ is $F(x)=\frac{x^{3}}{3}-6 x$.

$$
\int_{1}^{3}\left(x^{2}-6\right) d x=F(3)-F(1)=\left(\frac{3^{3}}{3}-6(3)\right)-\left(\frac{1^{3}}{3}-6(1)\right)=-\frac{10}{3}
$$

The Fundamental Theorem of Calculus I (FTC-1)

If f is continuous on the interval $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f, that is, $F^{\prime}=f$.

Example 2: Evaluate $\int_{0}^{\pi / 2}(2 \cos (x)-4 x) d x$.
An antiderivative of $g(x)=2 \cos (x)-4 x$ is $G(x)=2 \sin (x)-2 x^{2}$, so

$$
\int_{0}^{\pi / 2}(2 \cos (x)-4 x) d x=\left(2 \sin \left(\frac{\pi}{2}\right)-2\left(\frac{\pi}{2}\right)^{2}\right)=2-\frac{\pi^{2}}{2}
$$

FTC-1: Alternative Formulations

We frequently use the notation $\left.F(x)\right|_{a} ^{b}$ to stand for $F(b)-F(a)$, so that FTC-1 can be rewritten as

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}
$$

FTC-1 says that definite and indefinite integrals are related as follows:

$$
\int_{a}^{b} f(x) d x=\left.\int f(x) d x\right|_{a} ^{b}
$$

Example 3: Evaluate $\int_{1}^{4} \frac{5 x^{2}-\sqrt{x}-3}{\sqrt{x}} d x$.
Solution:

$$
\begin{aligned}
\int_{1}^{4} \frac{5 x^{2}-\sqrt{x}-3}{\sqrt{x}} d x & =\int_{1}^{4}\left(\frac{5 x^{2}}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}}-\frac{3}{\sqrt{x}}\right) d x \\
& =\int_{1}^{4}\left(5 x^{3 / 2}-1-3 x^{-1 / 2}\right) d x \\
& =2 x^{5 / 2}-x-\left.6 x^{1 / 2}\right|_{1} ^{4} \\
& =(2 \cdot 32-4-6 \cdot 2)-(2-1-6)=53
\end{aligned}
$$

Here is another way of writing FTC-1:

$$
\int_{a}^{b} F^{\prime}(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a) .
$$

This version of FTC is often referred to as the Net Change Theorem, because it says that the integral of $F^{\prime}(x)$ - that is, the integral of the rate of change of $F(x)$ - is the net change in F.

Example 4: Water is leaking out of the bottom of a storage tank. The rate of flow at time t (in minutes) is $r(t)=200-8 t$ (in $\mathrm{L} / \mathrm{min}$). How much water is lost between $t=5$ and $t=20$?

Solution: Let $w(t)$ be the amount of water in the tank at time t, so that

$$
w^{\prime}(t)=-r(t)
$$

The net change in the amount of water in the tank is therefore

$$
\begin{aligned}
w(20)-w(5) & =\int_{5}^{20} w^{\prime}(t) d t=\int_{5}^{20}(8 t-200) d t \\
& =4 t^{2}-\left.200 t\right|_{5} ^{20}=\left(4 \cdot 20^{2}-200 \cdot 20\right)-\left(4 \cdot 5^{2}-200 \cdot 5\right) \\
& =-1500 \mathrm{~L}
\end{aligned}
$$

This calculation produces a negative number because the amount of water in the tank has decreased. The amount of water lost is 1500 L .

The statement of FTC-1 applies only to continuous functions, but in fact it can be used to integrate functions whose only discontinuities are a finite number of holes or jumps. For example:

$\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{d} f(x) d x+\int_{d}^{e} f(x) d x+\int_{e}^{f} f(x) d x+\int_{f}^{b} f(x) d x$ and each the four integrals on the right can be evaluated using FTC.

Warning: FTC-1 cannot be used if $f(x)$ has an infinite discontinuity (vertical asymptote). We will explore this further in MATH 126.

Example 5: The velocity function (in meters per second) for a particle moving along a line is

$$
v(t)=3 t-8
$$

(i) Find the displacement of the object from time $t=0$ to time $t=4$.
(ii) Find the total distance traveled from time $t=0$ to time $t=4$.
(i) The displacement is the net change in position:

$$
\int_{0}^{4} v(t) d t=\left.\left(\frac{3 t^{2}}{2}-8 t\right)\right|_{0} ^{4}=-8
$$

(ii) $v(t)$ is negative on $\left(0, \frac{8}{3}\right)$ and positive on $\left(\frac{8}{3}, 4\right)$. The total distance is

$$
\begin{aligned}
\int_{0}^{4}|v(t)| d t & =-\int_{0}^{\frac{8}{3}} v(t) d t+\int_{\frac{8}{3}}^{4} v(t) d t \\
& =\left.\left(8 t-\frac{3 t^{2}}{2}\right)\right|_{0} ^{8 / 3}+\left.\left(\frac{3 t^{2}}{2}-8\right)\right|_{8 / 3} ^{4}=\frac{40}{3}
\end{aligned}
$$

Example 5: The velocity function (in meters per second) for a particle moving along a line is

$$
v(t)=3 t-8
$$

(i) Find the displacement of the object from time $t=0$ to time $t=4$.
(ii) Find the total distance traveled from time $t=0$ to time $t=4$.

$$
\begin{aligned}
\text { Displacement } & =\int_{0}^{4} v(t) d t \\
& =-A+B \\
\text { Total distance traveled } & =\int_{0}^{4}|v(t)| d t \\
& =A+B
\end{aligned}
$$

